

Modbus Actuator Control Modbus RTU Option Card Installation Manual

Modular Design Electric Valve Actuators

Modbus RTU Option Card Installation Manual

The Modbus card described in this manual contains static-sensitive devices. Suitable precautions, such as wearing an earthed anti-static wrist strap, should be taken before handling the card. It should be kept in an anti-static bag or box while it is not fitted within an actuator.

Note 1:

The Modbus Modules described in this manual are suitable for inclusion in the following Centork Centronik Actuators: CKc (Isolating Duty) and CKRc (Modulating Duty) Actuators.

Note 2:

Throughout this manual the Modbus Module may simply be referred to as the module or MFU (Modbus Field Unit – the circuit board fitted to the actuator in the field).

Note 3:

The information in this manual relates to the following:

Modbus module firmware version V0050 or later.

Centronik Main Board software version V013.

The manual can be used with other versions, but be aware that there may be differences.

Note 4:

Inputs are the status messages from the actuator and outputs are the command messages to the actuator.

As we are continually developing our products their design is subject to change without notice.

© The contents of this document are copyright and must not be reproduced without the written permission of Centork.

The name Centork is a registered trademark.

WindowsTM is a registered trademark by Microsoft Corporation.

Modbus® is a registered trademark by Schneider Automation.

Contents

Glo	ssary o	of Terms:	5
Abb	oreviat	tions:	5
Not	es for	Centronik actuators:	5
1	INTR	ODUCTION	6
	1.1	General	7
2	MOD	BUS OPTION CARD PROPERTIES	8
	2.1	Mechanical Properties	8
	2.2	Electrical Properties	8
	2.3	Operation and Storage	8
3	FITTI	NG THE MODBUS MODULE OPTION CARD	9
	3.1	Inside a Centronik actuator	9
	3.2	Replacing or Fitting a Modbus Module Option Card	10
4	RS-48	85 DATA HIGHWAY, CONNECTIONS AND MFU SETUP	11
	4.1	Modbus Data Highway	11
	4.2	Highway Topology	12
	4.3	Cable Types	13
	4.4	Termination Network	14
	4.5	Inter-connecting the Highway and Setting up the MFU	15
		4.5.1 Single Highway	15
		4.5.2 Dual Highway	15
		4.5.3 Single Highway with Internal Repeater	15
5	THE /	ACTUATOR INPUT AND OUTPUT SIGNALS	16
	5.1	Control Outputs	17
		5.1.1 Controls Priority	19
		5.1.2 Modbus Control using Individual Coil commands	20
		5.1.3 Modbus Control using the ACTCON Register	20
		5.1.4 Modbus Control using the Actuator Position DV register	20
		5.1.5 The Centronik 'S' contacts (Modbus DOs)	20
		5.1.6 Centork Modbus Network Control Disable feature	20
	5.2	Actuator Digital Input Status Feedback	21
		5.2.1 Digital Inputs from the Actuator	23
	5.3	Actuator Analogue Input Feedback	23
6	MOD	BUS COMMUNICATION	24
	6.1	Electrical Specification	24
	6.2	Protocol	24
	6.3	Repeaters	24
	6.4	Dual Channel Mode	24
7	MOD	BUS DATABASE	25
	7.1	Modbus RTU Message Frame	25
	7.2	Modbus Address	25
	7.3	Function Code Support	26
	7.4	Broadcast Commands	27
	7.5	Data Location Offsets	27
	7.6	Data Locations	27
		7.6.1 Data Accessed with Function Code 01 - Read Coils	27
		7.6.2 Data Accessed with Function Code 02 - Read Discrete Inputs	28
		7.6.3 Data Accessed with Function Code 03 - Read Holding Registers	29
		7.6.4 Data Accessed with Function Code 04 - Read Input Registers	30

Contents

		7.6.5	Data Accessed with Function Code 05 and 15 – Force Single and Multiple Coils	31
		7.6.6	Data Accessed with Function Code 06 and 16 – Preset Single and Multiple Registers	31
		7.6.7	Data Accessed with Function Code 07 – Read Exception Status	31
		7.6.8	Data Accessed with Function Code 08 – Loopback Diagnostic Test	32
		7.6.9	Data Accessed with Function Code 17 – Report Slave ID	32
		7.6.10	Database Summary	33
8	CON	FIGURA	TION REGISTERS	35
	8.1	Actua	ntor Related Configurable Parameter Registers	36
		8.1.1	Action on Loss of Comms (Register 7)	36
		8.1.2	Limited Range Position Minimum and Maximum (Registers 8 and 9)	37
		8.1.3	Deadband and Hysteresis (Registers 10 and 14)	37
		8.1.4	Motion Inhibit Timer (MIT) (Register 11)	38
		8.1.5	Auxiliary Input Mask (Register 12)	38
		8.1.6	Comms Lost Position (Register 13)	39
		8.1.7	ESD DI-4/Net Disable (Register 19)	39
		8.1.8	Analogue Input Max (Register 20)	39
		8.1.9	Comms Fault Timer (Register 21)	39
	8.2	Modb	ous Network Related Configurable Parameter Registers	40
		8.2.1	Modbus Address (Register 22)	40
		8.2.2	Baud Rate (Register 23)	40
		8.2.3	Parity and Stop Bits (Register 24)	40
		8.2.4	Termination (Register 25)	40
		8.2.5	Actuator Tag Name (Register 26 to 31)	40
9	SETT	TING UP	AND MAINTAINING THE MFU	41
	9.1	Using	a Network Configuration Tool	41
		9.1.1	Accent	41
	9.2	Settir	ng up the network address in the MFU	41
	9.3		ng up a Centronik with the Setting Tool	42
	9.4		ng up the remote source in a Centronik with the Setting Tool	44
	9.5		tenance and Repair	44
	9.6	Recor	-	44
	9.7	Troub	pleshooting	45
Tah	ole of F	igures		
Turk		Centroni	ik	7
			Field Unit	8
	The	MFU and	d its location in a Centronik unit	10
			35 Data Highway	11
			Highway Topology	12
		cal RS-48		13
			nation for RS-485 highway. Biasing resistor values are typical	13
			utput Data Direction	16
			trol Priorities	10
			ge Position Control and Reporting	37
		-	nd Hysteresis settings 3	37
			ator Settings Page	41
			menu structure and MFU settable parameters	43
	2000			19

C 4

Glossary

Glossary of Term	s:			
Accent			erface for Bluetooth communication with the actuators. le from the Centork web site, www.centork.com	
Address		The unique address The address range i	s for a node on a particular highway of the fieldbus. is 1-247.	
Fieldbus		The digital, two-wa	y, multi-drop communication links.	
Field Unit		The Modbus Cento	rk option card fitted to the actuator.	
Interoperability			device from one manufacturer to interact with that cturer, on a fieldbus network, without loss of	
Master/Slave			nication used by the Modbus Module. The fieldbus master to control the data exchange on the highway.	
Modbus		The communication IEC 61850.	n protocol used for data exchange, as defined in	
Modbus RTU		The version of the p	protocol used by the Centork module.	
Node		A single device on t	the fieldbus.	
Parity		Bit added to data fo	pr error detection.	
Partial Stroke Test		Moving a little-used valve by a small percentage from an end limit and then returning it, proving that it will operate when required. Safety related.		
RS-485			erties of the data highway as defined by the IEC 8482 onductors, 2-wire twisted pair.	
Segment			485 fieldbus that is terminated at each end in its dance. Each Segment can include up to 32 devices	
Abbreviations:				
ACTCON	Actuator Control (Register)	Comms	Communications	
CRC	Cyclic Redundancy Check (error detection)	DIO1	Digital Input / Output Board, type 1.	

ACTCON	Actuator Control (Register)	Comms	Communications
CRC	Cyclic Redundancy Check (error detection)	DIO1	Digital Input / Output Board, type 1.
DIO2	Digital Input / Output Board, type 2.	DSM	Digital Switch Mechanism
DV	Desired Value	ESD	Emergency Shut Down
IEC	International Electro-technical Commission	MFU	Modbus Field Unit
MSM	Mechanical Switch Mechanism	MV	Measured Value
PCB	Printed Circuit Board	PLC	Programmable Logic Controller
RAM	Random Access Memory	ROM	Read Only Memory
RTU	Remote Terminal Unit	SW	Software

Notes for Centork:

There are two models of the Centronik actuator that can use the Modbus Network; the CKc standard duty actuator and the CKRc modulating duty actuator. These two models are interchangeable when talking about Modbus, so this manual is applicable to both. Centronik is the term applied to a Centork actuator that has an optional electronic control system in it. This is required for Modbus use. The Centork Centronik can be fitted with either a DSM (Digital Switching Mechanism) or an MSM (Mechanical Switching Mechanism). The DSM can report analogue torque values (0-120%) and position (0-100%). The MSM will only report torque as minimum (0%) or maximum (tripped), it does not report any intermediate values. It also only reports position as fully closed, fully open or intermediate (mid-travel).

Therefore, any functions that require use of analogue position or torque will not function and as such should not be used for units fitted with an MSM.

There is an optional potentiometer that can be fitted to the MSM which allows it to report position (0- 100%), which means that the position features can be used, however, this does not include the torque. If there is any uncertainty about what the model is, please consult the wiring diagram which will show which option is fitted.

Introduction

1 INTRODUCTION

The Centork Modbus Module Actuator Field Control option card (MFU) uses 2-wire (half duplex) RS-485 and the Modbus RTU protocol to allow for information exchange and control over the data highway between the actuator and a suitable host system with a Modbus capability.

The module is an integral part of the actuator in which it is housed and is fitted within the main electrical housing.

All adjustments to the settings for the module may be made via the Modbus data highway using a Modbus master tool or via the Infra-red or Bluetooth (using Accent software) actuator setting tools.

The settings which must be correct for communication are: address, baud rate, parity and stop bits. These are described in Section 6. The default values are: address 247, baud rate 9600, parity none and stop bits 1.

The Modbus Module circuits do not impinge on the actuator control electronics; the actuator itself remaining fully self-protecting. The module performs the tasks of network interface, actuator data collection and the issuing of actuator commands.

The Modbus Module may command the actuator into which it is fitted to: open, stop, close, perform an ESD operation, perform a partial stroke test or move to a set position. Commands to the module come from the network and will have been generated in a master controller. The module operates as a slave in Master/Slave communication mode only, using the Modbus RTU protocol.

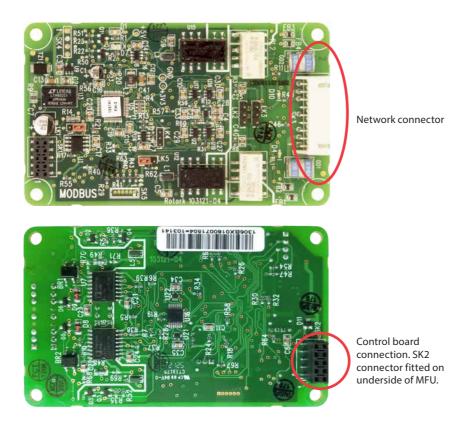
General

1.1 General

The Modbus Module has three variants:

- Single RS-485 highway
- Dual Independent isolated RS-485 highways
- Single RS-485 highway with inbuilt isolating repeater
- Communication Medium: RS-485 2-wire highway (single or dual), half duplex
- Protocol: Modbus RTU
- Mode: Master/Slave; module is a slave

The Centronik.



2 MODBUS OPTION CARD PROPERTIES

2.1 Mechanical Properties

The MFU is a single rectangular printed circuit board that fits inside the actuator electrical housing. It connects directly to the Control Module PCB of the actuator by a ten pin connector (10 way header, SK2). The field unit should be carefully fitted so that the connectors mate correctly. The actuator internal wiring harness connects the field unit at SK3 to the Modbus highway via the actuator terminal bung. The connector is polarised to prevent incorrect connection. In a Centronik actuator, the field unit can be fitted directly to the Control Module PCB using the slot available, or can be fitted on top of another option module that may already be fitted in the slot.

The Modbus Field Unit

2.2 Electrical Properties

The MFU processor circuits communicate to other modules in the actuator via an internal communications bus. The MFU does not sit in the main control path for the actuator and does not affect the actuator control integrity. The MFU processor contains the firmware for the unit. The firmware version is indicated on the label fitted to the processor. This can be read from the actuator by using the Bluetooth setting tool.

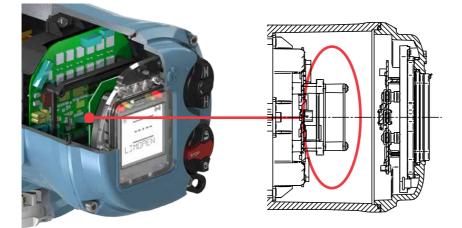
Additionally, the circuit includes non-volatile memory that is used to store specific field unit communications settings, including address. The Modbus RS-485 fieldbus data highway connections are fully isolated from the actuator electronics.

2.3 Operation and Storage

The MFU is designed to be stored in the actuator and operated within the same environment as the actuator.

The constraints are:

- Operating temperature:
- Storage temperature:
- Relative Humidity:


-40 °C to +70 °C -50 °C to +85 °C 5% to 95% (<50 °C) non-condensing

3 FITTING THE MODBUS MODULE OPTION CARD

3.1 Inside a Centronik Actuator

The MFU is suitable for fitting into Centronik actuators with P000.0000 and K000.0000 series wiring diagrams and CK_{RC} with P000.1000 and K000.1000 series wiring diagrams. The connections and fitting in a CK_{RC} are the same as the CK_C so the following information effectively relates to both actuator types. The MFU is normally located in the first option board slot inside the electrical housing, using Main PCB connection SK2.

The Interface card must be correctly located and attached to the appropriate connectors to match the actuator. The illustration below shows the location of the cards in the Centronik unit.

The MFU and its location in a Centronik unit

With the Centronik actuator, the remote inputs are always present (they are conditioned by the MFU) and there is an option to include Digital Outputs from relay contacts. If the MFU is required to operate the 4 digital outputs that can be controlled from the card, then an Extra Relay Indication card associated with these outputs must be fitted into the option slot above the Modbus card in the actuator.

The MFU is connected to the control module by a 10 way header (SK2). The wiring harness from the actuator terminal bung connects the Modbus RS-485 field connections to SK3.

3.2 REPLACING OR FITTING A MODBUS OPTION CARD

The MFU should be replaced or fitted only in a suitable environment. The actuator must be made electrically safe before opening any covers.

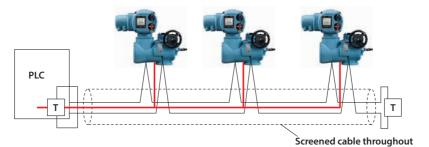
WARNING: REMOVAL OF CERTAIN COVERS WILL VOID WARRANTY. IT IS ADVISED THAT A CENTORK APPROVED ENGINEER PERFORM THIS FUNCTION. SUITABLE ANTI-STATIC PRECAUTIONS SHOULD BE TAKEN, AS THE ACTUATOR CIRCUITRY CONTAINS STATIC-SENSITIVE COMPONENTS.

The electrical housing cover should be removed and the existing MFU carefully unplugged from its main connector. The Interface card is attached to the Main PCB mounting ring by four screws, which may be T20. Once removed from the main connector, the wiring loom connectors should be removed. The replacement board is fitted in the reverse order to removal. The wiring harnesses are polarised so that only the correct one will fit its mating part on the circuit board.

If the operation is to fit an MFU for the first time then the necessary wiring looms must be added to the internal wiring harness of the actuator. The actuator wiring diagram shows the connectors and looms used. The wiring looms are fitted inside the actuator before attempting to fit the MFU. Once the looms are in place connect them to the MFU, then fit the MFU to the actuator main board connector.

Once the module is fitted the actuator should be re-assembled.

If a damaged card is being replaced, it is advisable to check the software version numbers are the same between the new and old card to ensure consistent operation. For more information please contact Centork.


Modbus parameters can be set and adjusted either by using the Infra-red and Bluetooth setting tools or by communication over the network. Be aware that if you make changes to the communication parameters over the network, you will lose communication until you also set these new parameter values in the master.

Data Highway Configurations

4 RS-485 DATA HIGHWAY, CONNECTIONS AND MFU SETUP

4.1 Modbus Data Highway

The MFU uses RS-485, 2-wire, half duplex, and Modbus RTU communications at various data rates. The rules governing the installation and connection of an RS-485 highway should be observed at all times to produce a successful installation. The RS-485 highway does not allow power to be transferred and the MFU is powered from the actuator itself. The MFU can only report data when the actuator or electronics module is powered up. (The actuator may have an auxiliary power supply attached, so that actuator position can be reported even when the main actuator supply is removed).

Typical RS-485 Data Highway

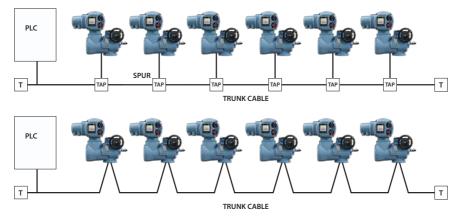
The data highway must be terminated with a resistor of 120 ohms at each end. One of the terminators must be an active termination. This requires a 5 volt DC power supply. The negative side of the supply is attached to the data negative wire by a 560 ohm resistor. The positive side of the supply is attached to the data negative wire by a 560 ohm resistor. The positive of the supply is attached to the data negative wire by another 560 ohm resistor. Data positive is the wire which has a positive voltage on it compared to the data negative wire when a logic 1 pulse is on the highway.

The highway itself can use tapped spur or stub connections to the actuators, but it is recommended to keep any stub lengths to a minimum for successful operation. Alternatively, the connection can be made in and out of each actuator in a daisy-chain arrangement. The length of the highway and number of devices connected will vary from project to project. The Modbus standard permits up to 32 devices to be connected per segment, though one of these devices will be the PLC. If more devices are needed, (up to the maximum addressable of 247) then RS-485 repeaters may be added after each group of 32. The standard default address of the MFU is 247.

The length of the highway will determine the maximum speed for the data transmission. The greater lengths are achieved at the lower transmission speeds.

Although RS-485 requires only 2 wires for data transmission, the Modbus standard also requires that all the nodes on the network have a maximum common mode differential of -7 to +12 volts. This requires the ground potential at all points to be within the -7 to +12 volt limit. If the equipment is distributed over a wide area, or an area with poor ground conductivity, it may be necessary to connect a third wire between all the nodes. Most successful installations use 3 wires and for this, Centork provides a 'common' terminal on the actuator. The common wire is shown in red in the above figure.

With RS-485 the data passes over a single 2-wire cable, but the Modbus protocol is such that there are periods between messages when no devices are actively driving the lines. In order to ensure that data continues to flow correctly after these periods, the lines are biased to suitable voltage levels during the time the line is idle. This is usually achieved by biasing at the PLC, which forms the active terminator. The MFU does not contain biasing components (except for the repeater version) and therefore requires biasing to be made externally. If the PLC does not do the biasing, then an active terminator must be fitted to the network highway and will provide the necessary biasing.


11

Data Highway Configurations

4.2 Highway Topology

Two different connection topologies can be used for RS-485. The first system is to use a trunk line with various spur lines from it. This system will require the location of the taps in junction boxes near to the actuators. With the second, the actuators can be directly connected to the trunk line in a daisychain. Each configuration requires the cumulative total of the stub lines to be kept within the permitted maximum for the network speed to be used. A combination of both topologies may be used. Topologies, such as ring and star are non-standard and should not be used with standard Modbus hardware. However, a ring network can be achieved using the single channel with repeater hardware.

It is good practice to avoid spur lines wherever possible.

RS-485 Data Highway Topology

The maximum trunk length, length of each spur and the cumulative total are dependent on the system speed in use. The table below suggests the maximum figures for copper cable. The segment length is the total of the trunk and all the spurs added together.

Data Rate (Baud)	Maximum Segment Length (m)	Total Spur Length (m)
9,600	1,200	500
19,200	1,200	500
38,400	1000	300
57,600	750	200
115,200	500	100

Within each actuator there is a short drop line or stub connection wire from the terminals to the MFU itself. This length must be included in any calculation for total and individual drop lengths. For the Centronik actuator, this length is 0.4 metres.

If greater distances are required for the network, then the actuators can be operated at lower baud rates of 300, 600, 1,200, 2,400 or 4,800 baud. Alternatively, the distances can also be increased at the higher data rates by using repeaters or fibre-optic links between the devices on the network.

Data Highway Configurations

4.3 Cable Types

The network must be connected using a suitable cable. Two conductors plus a shield and drain wire are required as a minimum, though Centork recommends the use of a 3 wire cable to ensure the common mode voltage between all the actuators and the PLC is kept within the RS-485 specified limits.

Among the cable manufacturers, Belden have the PVC jacketed 3105A single pair 2 core cable, which meets the minimum requirement. Belden 3106A has an extra core and therefore has sufficient conductors to include a common wire between all the nodes on the network and meets the Centork recommendation. Information on Belden cable may be found on the Belden web site (www.belden.com) or at http:// bwcecom.belden.com/, where a search on RS-485 will reveal technical papers and cable information.

Belden 3105A

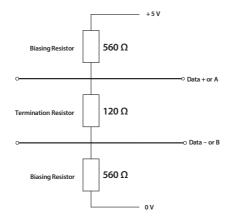
Belden 3106A

Belden Part No.	Total Number of Conductors	AWG (stranding) dia. Inches	Nom. DC Resistance	Insulation material	Nominal O.D.	Nom Impedance (ohms)	Nominal Capacitance
3105A Paired - EIA Industrial RS- 485 PLTC/CM	2	22 AWG (7 x 30)	48.2 ohm/km	Overall PVC jacket Datalene insulated twisted pair	7.26 mm	120	36.1 nF/km
3106A Composite - EIA Industrial RS-485 PLTC/ CM	3	22 AWG (7 x 30)	48.2 ohm/km	Overall PVC jacket Datalene insulated twisted pair	7.67 mm	120	36.1 nF/km

Typical RS-485 cable

Other cable manufacturers also produce suitable cables for Modbus networks. **The quality of the Modbus network will largely depend on the cabling choices made during planning; and quality of installation.** The terminals to which the wires connect in each actuator type will be different and the actuator wiring diagram must be consulted to establish the connections.

Single and Dual Data Highway Configurations


4.4 Termination Network

In order to operate correctly, all RS-485 highways must be terminated at each end of the main trunk line using a suitable resistor (120 ohms nominal, half Watt rating). These will usually be near the scanner PLC and near the last actuator. The resistors are connected between data line A and data line B. If the termination resistors are not fitted there is a possibility that the network communications will be unsatisfactory due to signal reflections.

One of the terminations must be active, using biasing resistors. These resistors put a known voltage across the data highway, so that there is a fixed state when none of the devices on the highway is transmitting. Without the active termination, there may be some communications errors.

The value of the biasing resistors must be between 450 Ω and 650 Ω .

Active Terminator

Active Termination for RS-485 highway. Biasing resistor values are typical

The MFU has an internal termination resistor which does not require any external wiring to be included. The termination resistor, or resistors for a dual channel, can be electronically switched on through the setting menu within the Centronik unit.

Termination may also be switched on and off in all actuator types where the MFU is fitted, through the network, by writing to register 25 and setting it to 1 for ON and to 0 for OFF. Switching termination on in a dual card will result in both channels being terminated.

Termination is passive (with no biasing resistors) on the single and dual channel MFU cards. The biasing resistors are fitted to the single channel-and-repeater MFU card, so that the termination is active when enabled.

When power is removed from the actuator, the termination network(s) is no longer connected across the data highway. For this reason, we suggest a separate external active terminator is used on the highway at one end or the other of the main trunk line.

When using the single highway with internal repeater the termination should always be fitted (or selected) on both sides of the repeater, since it will be the beginning and the end of a highway segment.

Single and Dual Data Highway Configurations

4.5 Inter-connecting the Highway and Setting up the MFU

The three MFU variations (Single, Dual and Single Repeater) allow for various different highway connections. The 'single channel version' can be used for simple highways. The 'dual channel version' is used for redundant highway applications, where the highway integrity is important and the 'single-highway-with-repeater version' can be used for applications where distances are extended beyond the values listed on page 20 or where a ring type topology is desired.

4.5.1 Single Highway

With the single channel option the actuator is connected to only one highway. The connection of the actuator to the highway uses terminals 1A and 1B. The terminal numbers depend on the actuator type and are indicated on the actuator wiring diagram. Take care to ensure that the correct polarity is observed on the data highway connection.

• Data line 1A is positive with respect to data line 1B when the MFU is transmitting a '1'.

There are no links or settings required on the MFU card when this version is being used.

4.5.2 Dual Highway

The actuator can be connected to two highways when redundant communication links are required. The connection of the actuator to the highways uses terminals 1A and 1B for highway 1 and 2A and 2B for highway 2. The terminal numbers depend on the actuator type and are indicated on the actuator wiring diagram. The last actuator on the highway should have the termination resistors switched on. Take care to ensure that the correct polarity is observed on each data highway.

• Each data line A is positive with respect to data line B when the MFU is transmitting a '1'.

The dual channel MFU uses a separate Modbus address for each channel, so it is possible to use the same address or different address on each channel. It is possible to communicate with both channels at the same time.

4.5.3 Single Highway with Internal Repeater

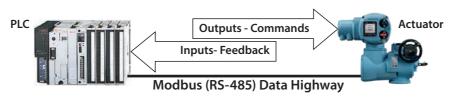
With this option a single highway passes through the Modbus Module and an internal repeater regenerates the data signals. The input to output connection is also isolated and this then allows the next section of cable to reach the maximum specified distance and the number of connected devices on the section to be 32. Termination resistors will be required at all repeater connection points.

Each repeater has a small propagation delay (micro seconds), this should be taken in to consideration in systems design when using multiple repeaters – for example when creating a ring network.

• Data line 1A is positive with respect to data line 1B when the MFU is transmitting a '1'.

The internal repeater supports data speeds from 300 to 115,200 baud.

The repeater operates in both directions such that communications that appear on channel 1 will be repeated onto channel 2, and communications that appear on channel 2 will appear on channel 1. If the message is addressed to a device, the message will both be repeated and processed by the Modbus Module. The reply will appear, only, on the channel side where the message came in, i.e. a message received on channel 1 will be repeated over to channel 2 and once the message is processed the reply will appear only at channel 1. This is to avoid issues in a ring network that may be caused by the same message being received at both ends of the ring.



5 THE ACTUATOR INPUT AND OUTPUT SIGNALS

The MFU allows the actuator to be controlled by, and to report data to, a suitable host device using Modbus RTU protocol. This section explains the data signals that are available for exchange and their meaning in relation to the actuator functionality. The data locations used for the Modbus registers and coils are given later in this manual.

This section also gives information on the other control inputs available for moving the actuator.

Input and Output Data Direction

- Inputs are defined as signals originating at the actuator and fed back to the PLC over the RS-485 network, i.e. Inputs to the PLC.
- Outputs are defined as signals originating at the PLC and operating the actuator controls, i.e. Outputs from the PLC.

5.1 Control Outputs

The MFU can be used to control the actuator to position the valve. The valve may be moved fully closed, fully open or to an intermediate position. Additionally, the actuator can make the valve adopt an Emergency Shut Down position or perform a partial stroke test. The actuator may also be operated from its local controls, by hard wired direct contact inputs, or by the handwheel, where fitted. In the case of hard wired control, the Auxiliary Input Mask and control source must be correctly set.

See also Section 8.1.5 for a similar explanation.

As well as controlling the actuator, the MFU can also be used to operate 4 discrete output relays when the Digital Input / Output card also fitted within the actuator.

The control commands have three potential sources:

- Modbus network generated commands
- Actuator Local Controls
- Direct Hard-wired digital input controls

The full list of commands is shown in the table.

Command	CKc & CKrc
Modbus over the network	
Open	✓
Close	✓
Stop	\checkmark
Emergency Shut Down	\checkmark
Analogue Position Demand	√2
Partial Stroke	\checkmark
Relay output DO-1	√1
Relay output DO-2	√1
Relay output DO-3	√1
Relay output DO-4	√1
Local Actuator Controls	
Open	✓
Close	\checkmark
Stop	\checkmark
Direct Hard-Wired Inputs	
Open	\checkmark
Close	✓
Stop/Maintain	✓
Emergency Shut Down (Network Disable)	\checkmark
Open Interlock (active prevents opening)	\checkmark
Close Interlock (active prevents closing)	\checkmark

Note¹ : – Requires DIO or Extra Relay Indication board to be fitted **Note**² : – Requires a DSM or MSM with the optional potentiometer.

The Modbus network commands for Open, Close and Stop will operate the actuator provided -

- · Local/Local Stop/Remote selector is in 'Remote',
- · Modbus commands are not inhibited by the 'Inhibit/DI-4' input parameter setting and DI-4 condition,
- · No interlock is active,
- There is no standing hard wired control input active, except for Stop/Maintain,
- No alarm condition prevents it from moving,
- The Hand/Auto lever is not locked in Hand. If locked in Hand, this will cause a Valve Jammed or Valve Obstructed alarm.

Open

Close

A digital command to cause the actuator to open to the fully open position, as indicated by the Open limit switch. Under correct operation, without either stalling or jamming, the actuator stops either when the open limit switch is reached, when the torque exceeds the value set and the open limit switch has been reached, or a new command is sent over the network. An alarm condition arising during travel will also cause an unexpected stop of actuator movement.

A digital command to cause the actuator to close to the fully closed position as indicated by the Close limit switch. Under correct operation the actuator stops either when the close limit switch is reached, when the torque exceeds the value set and the close limit switch has been reached, or a new command is sent over the network. Similarly, an alarm condition arising during travel will cause an unexpected stop of actuator movement.

Many multi-turn actuators are set to open until the open limit switch is reached and close until the torque switch trips. This is appropriate for wedge gate and globe valves. The actuators can be set to open or close on limit or on torque.

Stop	With no other command present this digital command causes an actuator motor that is running to stop.
Emergency Shut Down	A digital command that causes the actuator to drive to its Emergency position. There are settings within the actuator to determine if this is a closed, open or stay put action.
	The ESD command can be configured to override thermostat trip, Interlocks and Local Stop.
	! Danger: Actuator hazardous area certification is invalidated while the thermostats are bypassed.
Analogue Position Demand	This function is only available over the Modbus network. To initiate Analogue Position Control the ACTCON register Position Enable bit must be set to 1 and all other bits to 0, enabling Position Control mode, value must be written to the Position DV register (range 0-100.0%, resolution 0.1%), the valve will open the appropriate amount and stop in that position (within the deadband setting). If a subsequent digital command to open or close the valve is issued, from any source, this will take priority over the analogue position command. Once the set point is reached the positioning controller is switched off, but while the Modbus outputs are being written the positioner is continuously being updated. A new value in the Position DV register will cause a new position to be adopted and a new bit set in the ACTCON register will cancel positioning mode. Provided limited range positioning is not invoked, the values 0% and 100% written to the Position DV register produce a special case output where the command is revised so as to fully close the valve to its tight shut off position (0%) and fully open the valve (100%). (This feature requires the actuators to be fitted with a DSM or MSM with optional potentiometer).
Partial Stroke	If a network command to perform a partial stroke test is sent to an actuator, it will carry out the test sequence provided the actuator has been set up to perform partial stroke testing. The actuator must be set to Remote and be at the correct end limit set for partial stroking. The actuator will also carry out a partial stroke test if a signal is applied to the open interlock input, if the Interlock configuration has been set to Partial Stroke.
Relay Output DO-1 to DO-4	These 4 commands are used to energise and de-energise the internal relays on the extra relay indication board (if fitted), (these outputs are referred to as S5-S8 in the standard actuator documentation when there is no Modbus Module in the actuator). The resulting outputs can be used for operating other equipment such as a pump or indication light. The actuator is not able to control these relays directly from the main board when the MFU is fitted. They will maintain their last state if power is removed from the actuator. On restoration of power the relays will be reset to their de-energised condition and the coils will report '0'.

18

Hard-Wired Open and Close	These commands operate the actuator in the same way as the open and close commands sent over the Modbus highway.
Hard-Wired Stop	The hard-wired stop input acts as a change of state input. If the actuator is moving, opening the Stop input will stop the actuator. If the Stop input is already open and a Modbus command is sent to the actuator, the Modbus command will be initiated. To stop the actuator the hard-wired input must be closed and opened again.
Hard-Wired ESD (Network Disable)	The hard-wired ESD may be set to cause the actuator to drive to its Emergency position. Alternatively, the input can be used to disable Modbus network control. The function of the input is determined by the parameterisation set into the MFU.
	The ESD command can be configured to override Thermostat trip, Interlocks and Local Stop.
	! Danger: Actuator hazardous area certification is invalidated while the thermostats are bypassed

5.1.1 **Controls Priority**

Since there are three potential sources for control inputs, the actuator and Modbus Module assign a priority for those occasions when two or more commands are applied simultaneously.

In addition, the remote control hard wired inputs can be used as discrete input signals, to report the status of other devices or as control inputs. The associated Auxiliary Input Mask parameter must be set to select the required function. In the case of the hard wired input for ESD this can be configured either as an ESD/DI-4 signal or as a 'Modbus Command Inhibit' to prevent network control signals from moving the actuator.

Centronik controls priority

Local controls go direct to the main board and override any Modbus controls and any hard-wired controls except hard-wired ESD. An actuator that has Local selected cannot be controlled over the Modbus network.

In addition, the remote control hard-wired inputs can be used as discrete input signals, to report the status of other devices or as control inputs. The associated Auxiliary Input Mask parameter must be set to select the required function. When selected for control, the hard-wired inputs take priority over the Modbus controls, but are subordinate to the local controls (except for ESD). If there is a Modbus command still present when a Local or Hard-wired command is removed, the Modbus command will re-assert itself.

In the case of the hard-wired input for ESD, this can be configured either as an ESD/HW_DI-4 signal or as a 'Modbus Command Inhibit' to prevent network control signals from moving the actuator.

High Priority			••••••	Low Priority
Local Stop ²		Local Close ¹	Hard-Wired Close	Modbus Close ³
		Local Open ¹	Hard-Wired Open	Modbus Open ³
	Hard-Wired ESD ²		Hard-Wired Stop ⁴	Modbus Stop ³
	Modbus ESD ^{2 3}			Modbus Position ³
				Modbus Partial Stroke ³

² The actuator can be set so that the local stop has a higher priority than ESD

³ Only one Modbus command is permitted at a time

⁴ If a Modbus command is applied while Hard-Wired Stop is present, stop is cancelled

Centork Control Priorities

5.1.2 Modbus Control using Individual Coil commands

The open, close, stop, ESD and DO-1 to DO-4 controls can be written using function code 05 or 15 to write to single or multiple coils. Writing the value FF00 turns a coil on and 0000 turns it off. The MFU provides a degree of intelligence in operating the coils for the open, close, stop and ESD functions. When one coil is turned on, all the others are turned off, so only one can be on at a time. The actuator will obey the last command it receives, so if two writes using function code 05 follow each other closely the later one will win.

A multiple coil write by function code 15 to turn on more than one of the open, close, stop and ESD coils in the same command is not permitted. If an attempt to energise more than one of these coils in one command is made, an exception response is generated and the multiple write is ignored.

With the open and close coils, these will turn off once the actuator completes the command, a new command is sent, the actuator is placed in local or some other interruption occurs. For example, the close coil will de-energise once the actuator reaches the close position and stops. The stop and ESD coils remain latched once turned on and are cleared by another command or by writing 0 to the coil.

The ESD action works slightly differently in that even if the coil is reset to 0, the action remains latched in the actuator. This is because a network ESD command overrides the actuator local controls. In order to remove the ESD action it is necessary to write a new command and if the actuator has local selected then the only command that will clear the latch is a write to the stop coil.

In the case of the DO-1 to DO-4 relays, they will follow the command, energising when turned on and de-energising when turned off. These relays also maintain their status if the actuator power is removed and reset to the de-energised state only when the power is restored.

5.1.3 Modbus Control using the ACTCON Register

A single register is provided to allow the digital control of the actuator. Writing a value to the register with function code 06 or 16 causes the actuator to open, close, stop, ESD or partial stroke test and at the same time cancels any other command set. This method of control removes the need to reset commands written with a code 05 coil write with a second write to the same location. The number written changes any coil states already set to the new value. Values of 5 to 255 cause no actions.

ACTCON Register (Register 5)					
Value	Stop	Close	Open	ESD	Partial Stroke
0	v	×	×	×	×
1	×	V	×	×	×
2	×	×	V	×	×
3	×	×	×	v	×
4	×	×	×	×	V

5.1.4 Modbus Control using the Actuator Position DV register

The analogue position control function will take priority over an earlier coil or ACTCON register command to open, stop, close, ESD or partial stroke test the actuator when a value is written to the Actuator Position DV register. The controller will then position the actuator to the desired value. The analogue position control function is cancelled either by the actuator achieving the desired position or a coil or ACTCON register write to one of the open, stop, close or ESD coils.

Note that when limited range positioning is used and the actuator is in the fully closed position, a DV value of 0%, or when the actuator is in the fully open position a DV value of 100%, are not acted upon.

5.1.5 The Centronik 'S' contacts (Modbus DOs).

The Centronik actuator has four 'S' contact outputs that may be configured to report the status of the actuator with signals such as Open Limit, Closed Limit etc. These are identified as S1 to S4.

In addition, an optional extra relay board can be fitted with four more relays. The status of these relays is then adjusted by Modbus commands on outputs DO-1 to DO-4. Note that these relays are latching and, if energised, will not change state when the actuator power is removed. On restoration of power the relays will be reset to their de-energised condition and the coils will report '0'.

5.1.6 Centork Modbus Network Control Disable feature

20

It is possible to set the Centronik ESD/DI-4 input so that the actuator ignores open, stop, close, ESD, partial stroke test and position control signals sent over the Modbus network. If the ESD DI-4 / Net Disable parameter is set to Active, then when the ESD input connection is made (i.e. 24 volts applied to ESD), Modbus control is not allowed. This feature is independent of the Auxiliary Input Mask setting. When the ESD DI-4 / Net Disable parameter is set to active, no ESD will be available.

5.2 Actuator Digital Input Status Feedback

The Modbus Module can report over the network a comprehensive data set relating to the status of the valve and actuator, as indicated in the table below. The conventional contact indications are also available from the actuator limit switches and indication contacts.

Status Feedback	CKc & CKrc
Actuator Moving	~
Close Limit	~
Open Limit	 ✓
Running Closed	 ✓
Running Open	 ✓
Remote selected	~
Local Stop selected	 ✓
Local selected	~
Thermostat Tripped	~
Monitor Relay	~
Valve Obstructed	~
Valve Jammed	 ✓
Valve Moving by Hand	~
Moving Inhibited	 ✓
Position Control Enabled	~
Watchdog Recovery	 ✓
Open Interlock input	~
Close Interlock input	~
DI –1	~
DI -2	 ✓
DI –3	~
DI -4	~

5.2.1	Digital Inputs from th	e Actuator

Actuator Moving	Whenever the actuator position is changing due to the motor running or if the output drive is moving, this bit will be set true (1).
Close Limit	This data bit indicates that the actuator has reached the closed position. The limit switch should be set slightly within the actual valve stroke to allow for torque seating or overshoot on closing without damaging the valve. The data bit will remain true (1) even if the position is passed through or exceeded.
Open Limit	This data bit indicates that the actuator has reached the open position. The limit switch should be set slightly within the actual valve stroke to allow for torque seating or overshoot on opening without damaging the valve. The data bit will remain true (1) even if the position is passed through or exceeded.
Running Closed	Whenever the actuator motor contactor used to drive the actuator in the closing direction is energised this bit will be true (1).
Running Open	Whenever the actuator motor contactor used to drive the actuator in the opening direction is energised this bit will be true (1).
Remote Selected	This bit is true (1) when the actuator three position Remote/Local Stop/Local selector is in the Remote position. The selector must be in this position for Modbus control of the actuator to be permitted.
Local Stop	The actuator three position selector passes from Local to Remote or Remote to Local through the Local Stop position. The switch can also be placed in Local Stop. When the switch is in the Local Stop position this bit will be true (1). Remote control of the actuator is not possible when the selector is in this position.
Local Selected	This bit is true (1) when the actuator three position Remote/Local Stop/Local selector is in the Local position. Remote control of the actuator is not possible when the selector is in this position.

21

C 22

Thermostat	If the temperature of the meter windings rises above the thermestativity value, the thermestatic entert
	If the temperature of the motor windings rises above the thermostat trip value, the thermostat contact will open and this signal will be present (1). There are no adjustments for the temperature at which the thermostat trip operates. The motor will be stopped if the thermostat trips. Only once the motor has cooled down and the thermostat has reset itself can a new Remote, Network or Local command to move the actuator be carried out. A setting on the actuator main board allows the ESD command to override the thermostat. The bit will remain set at logic 1 until the motor cools down and the thermostat resets itself.
Monitor Relay	This signal is true (1) when actuator remote control is not available. The actuator Monitor Relay status is a composite signal for several alarms. This signal will be set true if the actuator selector is in Local or Local Stop (not in Remote) or if the thermostat trips. The mains supply is also monitored and if one of the three phases i lost, this bit is set. If the actuator is operated from a single phase supply and this is lost, then communication with the actuator will also be lost. Where a 3 phase supply is used, if the phase associated with the control circuits is lost then communications with the actuator will be lost.
Valve Obstructed	This bit will be true (1) if the actuator stops in mid travel when not expected to do so after receiving a command to move. If the actuator torque exceeds the trip value set during commissioning, then the motor will stop and motion will cease. The reason for the actuator stopping will be the high torque due to an obstruction and not to a 'Stop' signal or reaching the desired set-point position.
	The bit will remain true (1) until the actuator position changes by 2% or more.
the actuator will not res in the original direction	
Valve Jammed	This bit will be true (1) if the actuator is stationary at the end of travel and fails to move away from the seat of the valve when a network command requests it to do so. The actuator will trip on excessive torque due to the valve being jammed in the seat. The MFU fails to see movement and reports this status after the time se in the associated parameter during the MFU set-up.
	The bit will remain true (1) until the actuator position changes by 2% or more.
will run in the same dire	The manual movement of the valve is reported as true (1) if the actuator is moved by the handwheel
	away from the last position. The percentage of travel required to trip the indication is set in the associated parameter (Register 17) during MFU set-up.
	parameter (Register 17) during MFO set-up.
	The bit will remain true (1) until the handwheel is again stationary.
Moving Inhibited	The bit will remain true (1) until the handwheel is again stationary.
Moving Inhibited	The bit will remain true (1) until the handwheel is again stationary.
Moving Inhibited	The bit will remain true (1) until the handwheel is again stationary. This bit will be true (1) when the Motion Inhibit Timer is active or the Interrupter Timer is active, or both are active The Motion Inhibit Timer is used in position control to prevent the actuator from exceeding its prescribed number of starts per hour, or to reduce the effects of hunting during closed-loop control.
Moving Inhibited	 The bit will remain true (1) until the handwheel is again stationary. This bit will be true (1) when the Motion Inhibit Timer is active or the Interrupter Timer is active, or both are active The Motion Inhibit Timer is used in position control to prevent the actuator from exceeding its prescribed number of starts per hour, or to reduce the effects of hunting during closed-loop control. The Interrupter Timer can be used over part or the entire actuator stroke to slow down the effective speed over part or the entire actuator stroke to slow down the effective speed over part or the entire actuator stroke to slow down the effective speed over part or the entire actuator stroke to slow down the effective speed over part or the entire actuator stroke to slow down the effective speed over part or the entire actuator stroke to slow down the effective speed over part or the entire actuator stroke to slow down the effective speed over part or the entire actuator stroke to slow down the effective speed over part or the entire actuator stroke to slow down the effective speed over part or the entire actuator stroke to slow down the effective speed over part or the entire actuator stroke to slow down the effective speed over part or the entire actuator stroke to slow down the effective speed over part over the entire actuator stroke to slow down the effective speed over part over the entire actuator stroke to slow down the effective speed over part over the entire actuator stroke to slow down the effective speed over part over the entire actuator stroke to slow down the effective speed over part over the entire actuator stroke to slow down the effective speed over part over the entire actuator stroke to slow down the effective speed over part over the entire actuator stroke to slow down the effective speed over part over the entire actuator stroke to slow down the effective speed over the entire actuator stroke to slow down the effective speed over the entire actuator stroke to slow down t
-	 The bit will remain true (1) until the handwheel is again stationary. This bit will be true (1) when the Motion Inhibit Timer is active or the Interrupter Timer is active, or both are active The Motion Inhibit Timer is used in position control to prevent the actuator from exceeding its prescribed number of starts per hour, or to reduce the effects of hunting during closed-loop control. The Interrupter Timer can be used over part or the entire actuator stroke to slow down the effective speed or valve travel. When under network control, the control signal does not need to be re-applied when this bit is true, as the
Moving Inhibited Position Control Enabled Watchdog Recovery	 The bit will remain true (1) until the handwheel is again stationary. This bit will be true (1) when the Motion Inhibit Timer is active or the Interrupter Timer is active, or both are active. The Motion Inhibit Timer is used in position control to prevent the actuator from exceeding its prescribed number of starts per hour, or to reduce the effects of hunting during closed-loop control. The Interrupter Timer can be used over part or the entire actuator stroke to slow down the effective speed or valve travel. When under network control, the control signal does not need to be re-applied when this bit is true, as the control action will continue once the time has elapsed. This bit will be true (1) when a Position command is being actioned. This data can be used to indicate that
Position Control Enabled	 The bit will remain true (1) until the handwheel is again stationary. This bit will be true (1) when the Motion Inhibit Timer is active or the Interrupter Timer is active, or both are active The Motion Inhibit Timer is used in position control to prevent the actuator from exceeding its prescribed number of starts per hour, or to reduce the effects of hunting during closed-loop control. The Interrupter Timer can be used over part or the entire actuator stroke to slow down the effective speed or valve travel. When under network control, the control signal does not need to be re-applied when this bit is true, as the control action will continue once the time has elapsed. This bit will be true (1) when a Position command is being actioned. This data can be used to indicate that positioning mode has control of the actuator. The MFU watchdog automatically resets the processor if it is tripped. This bit will be true (1) following a

Close Interlock	The input contact to the Close Interlock is monitored by the MFU. Whenever the input contact is closed this bit will be true (1). If the actuator is not using the interlock function, then this input can be used as a digital status feedback for a plant signal not associated with the actuator. If the interlock circuit is being used, then this bit will indicate the existence of an interlocking input that can prevent the actuator from closing.
Digital Input DI-1	This bit reports the status of the contact connected to the actuator hard wired Open terminals. The input can be used to control the actuator or simply to report the status of a plant feedback signal. The function is set in the Auxiliary Input Mask parameter which determines whether the bit is reported as true (1) for a closed contact or an open contact and whether the input controls the actuator or not. Note that the input is always reported, even when it is also controlling the actuator.
Digital Input DI-2	This bit reports the status of the contact connected to the actuator hard wired Close terminals. The input can be used to control the actuator or simply to report the status of a plant feedback signal. The function is set in the Auxiliary Input Mask parameter which determines whether the bit is reported as true (1) for a closed contact or an open contact and whether the input controls the actuator or not. Note that the input is always reported, even when it is also controlling the actuator.
Digital Input DI-3	This bit reports the status of the contact connected to the actuator hard wired Stop/Maintain terminals. The input can be used to control the actuator or simply to report the status of a plant feedback signal. The function is set in the Auxiliary Input Mask parameter which determines whether the bit is reported as true (1) for a closed contact or an open contact and whether the input controls the actuator or not. Note that the input is always reported, even when it is also controlling the actuator.
Digital Input DI-4	This bit reports the status of the contact connected to the actuator hard wired ESD terminals. The input can be used to control the actuator or simply to report the status of a plant feedback signal. The function is set in the Auxiliary Input Mask parameter which determines whether the bit is reported as true (1) for a closed contact or an open contact and whether the input controls the actuator or not. Note that the input is always reported, even when it is also controlling the actuator.
	A configuration feature also allows DI-4 to be set to act as a 'Disable Fieldbus Control' input. In this mode, when the input is made (irrespective of the Auxiliary Mask setting), the actuator cannot be controlled over the network. This can be useful during plant commissioning to prevent unwanted valve movement.

5.3 Actuator Analogue Input Feedback

The Modbus Module makes a number of analogue variables (available over the network). These contain information about the valve and actuator.

Analogue Feedback	Centronik with DSM	Centronik with MSM
Actuator Instantaneous Torque	 ✓ 	×
Valve Position	~	✔ ¹

Note ¹ Only fully open, mid-position and fully closed will be reported

Torque	The currently developed torque value is reported as an Integer Value in the range 0 to 120 (0-78 hex), representing the percentage of actuator rated torque generated. Only the Centronik actuator fitted with the DSM will report torque values.
Valve Position	The current valve position is reported as an Integer Value in the range 0 to 1000 (0 – 3E8 hex) representing the percentage position to 0.1% resolution. The actuator automatically scales the valve position value reported from the setting of the limit switches.
	If Limited Range Positioning is invoked by setting the appropriate parameters (8 & 9), then the reported valve position 0 to 100% follows the limited range of valve travel.

6 MODBUS COMMUNICATION

6.1 Electrical Specification

Line Electrical Specification:

RS-485, two wire, half duplex

6.2	Protocol	
Modbus Transmission Mode Supported Baud Rates		RTU (8 bit Binary data) 300, 600, 1k2, 2k4, 4k8, 9k6, 19k2, 38k4, 57k6, 115k2
Number	of bits per character	
Start bits		1
Data bits (LSB first)		8
Parity (configurable)		Odd, Even, None
Stop bits (configurable)		1 or 2
Error checking		CRC

Message turn round time/delay time

Minimum period between request and response:

Data Speed (Baud)	300	600	1k2	2k4	4k8	9k6	19k2	38k4	57k6	115k2
Turn Round Time (ms)	188	100	60	40	28	24	20	20	20	20
Repeater Delay ¹ (µs)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Inter-Character timeout (t1.5)(ms)	55.04	27.52	13.76	6.88	3.44	1.72	0.860	0.750	0.750	0.750
Inter-frame delay (t3.5)(ms)	128.3	64.16	32.08	16.04	8.02	4.01	2.00	1.750	1.750	1.750

Note¹ - In the Single Highway with Internal Repeater Modbus Module option there is a propagation delay in the repeater.

Maximum period between request and response: 190 ms

6.3 Repeaters

24

A single segment supports up to 32 nodes, one of which is usually the PLC. The addition of repeaters allows the segment to be extended in length or to increase the number of nodes connected to the network, or both. The maximum lengths at different speeds are discussed in section 4.2. The number of repeaters in a single highway should be kept to a minimum, as this can seriously extend the delay between a message being sent and the response arriving at the PLC.

The Single highway with inbuilt Isolating Repeater version of the Modbus Module introduces propagation delays as mentioned above. Care must be taken in any system design to allow for these delays.

6.4 Dual Highway, Dual Channel

The dual channel version of the Modbus Module has two ports and allows two data highways to be used for communication from the host system to the module. These highways operate independently with a limit of 32 devices per segment and the ports on the module communicate with their associated highway. There is some interaction between the ports since a single processor serves them and the following points must be noted:

- The module only has one setting for the unit's communication speed and format. Both the Communication ports share one set of common values for these parameters. The channels may have the same address or may be different.
- When communication is active, every device on the highway reads all the data request or command messages. Each unit then responds only to those messages aimed at its address.
- Port 1 has priority over Port 2. Since every message is read, the host system must allow an idle time on Port 1 to allow Port 2 time to read its messages completely.
- A minimum time gap equivalent to 11 bytes of data should be left between data requests on both highways. This will ensure that the processor has sufficient time to respond to messages directed at Port 2. Without this idle period messages directed at Port 2 may not be acknowledged and a response may not be generated.

7 MODBUS DATABASE

The data in the Modbus Module may be collected using a number of different Modbus function codes. Similarly the commands to the MFU can be either register or discrete based. This inbuilt flexibility is designed to allow for any host device to be able to access the actuator over a Modbus network in the simplest way.

This section provides information on the function codes supported and the data that may be collected or commands issued using those codes.

In all cases, registers and discrete locations are numbered from 0 and do not include any offsets.

7.1 Modbus RTU Message Frame

Message synchronisation is maintained by stimulation; the receiving MFU monitors the elapsed time between receipts of characters. If 3 and one-half character times elapse without a new character or frame completion, then the next byte received will be the start of a new message, beginning with the address:

Modbus Addres	Function Code	Register or Discrete Address	Number of Registers or Bits	Data Field	CRC Check
8 bits	8 bits	16 bits	16 bits	N bits	16 bits

Modbus transaction format

7.2 Modbus Address

The Modbus Module allows slave addresses in the range 1 to 247 to be used for devices. The addresses above 247 are reserved for special functions. Address 0 is recognised by all the slaves and is used for global Broadcast messages only. This leaves 247 addresses for use by the connected Modbus Modules on the data highway.

Note that the dual highway unit can use a single address for both highway connections, or it can use two different addresses:

- Single RS-485 highway Address range supported = 0 to 247 (0 for broadcast)
- Dual Independent Isolated RS-485 highways
 Address range supported = 0 to 247 (0 for broadcast)
- Single RS-485 highway with inbuilt isolating repeater Address range supported = 0 to 247 (0 for broadcast)

7.3 Function Code Support

Details of the Request and Reply formats for messages can be found in the Modbus Application Protocol Specification V1.1b3, found at http://www.modbus.org. The following table lists the function codes supported by the Modbus Module.

Function Code	Modbus Name	Addressing
01	Read Output Coil Status	Discrete
02	Read Input Status	Discrete
03	Read Holding Registers	Register
04	Read Input Registers	Register
05	Force Single Coil	Discrete
06	Pre-set Single Register	Register
07	Read Exception Status	
08	Loopback Diagnostic Test	
15	Force Multiple Coils	Discrete
16	Pre-set Multiple Registers	Register
17	Report Slave ID	

Exception Response Code	Meaning
01	Illegal function code or incorrect message length
02	Illegal data address (Register or discrete address invalid)
03	Illegal data value
06	Busy

To read data the function code to use will depend on whether the data is to be read as single bits or as 16 bit registers. For example, code 01 reads data as discrete bits, whereas code 03 reads the data as registers. In many cases Discrete and Register access reads the SAME data:

Code 01 - Read Coils

This is used to read discrete (bit) data from the database to obtain information about the status of the output coils (commands).

- Code 02 Read Input Status Requests
 This is used to read discrete (bit) data from the database to obtain
 information about the actuator current status, such as open or
 closed positions reached.
- Code 03 Read Holding Register Requests All the data in the MFU can be read using function code 03. Discrete data is mapped into registers that are available for this command.
- Code 04 Read Input Register Requests Actuator position and torque registers, plus the status bits are accessible with function code 04.
- Code 05 and 15 Force Single Coil or Multiple Coils The output coils are the discrete outputs from the actuator or its digital control commands. Code 05 writes one coil per message while code 15 can write values to several at once.
- Code 06 and 16 Preset Single Register or Multiple Registers
 Registers are used for position control and also for digital control
 and can be accessed singly, or in multiples, with these codes.
 Function code 06 writes a single 16 bit register while function
 code 16 can write several in one transaction.

Code 07 - Read Exception Status

This is a specific short message function code which returns predetermined discrete data from the MFU.

The message is used to allow fast transfer of a small data packet of 8 bits. A description of the data is given in section 7.6.7.

Code 08 - Loopback Diagnostic Test

The purpose of the Loopback Test is to test the communication system between the Modbus Module and the host. This code can be regularly sent and used as a heartbeat to test the communications link. The MFU supports this test when used with diagnostic code 00, Return Query Data, and 02, Return Diagnostic Register. No other diagnostic test codes are supported. See section 7.6.8.

Code 17 - Report Slave ID

This function code generates a response that contains the software version of the MFU and actuator tag data. The tag data may be written by the customer over the network. 12 ASCII characters can be written in this area. See section 7.6.9.

Exception Response Codes

Error code 01 will be presented back to the host if the function code in the data message is not one of those supported by the Modbus Module or the message length is not as expected.

Error code 02 will be presented back to the host if the Data Address is not valid for the Modbus Module.

Error code 03 will be presented back to the host if the value to be written in a coil or register write is not valid for the register or coil location chosen in the MFU.

Error code 06 will be presented back to the host if the MFU is unable to respond with a correct message because it is busy.

26

7.4 Broadcast Commands

Broadcast commands are only supported for specific registers, coils and commands:

Stop and ESD

Code 05 writes to coils 0 (Stop) and 3 (ESD) are supported for address 0 broadcast. Code 06 writes to register 5 (Actuator Digital Control) with values 0 (Stop) and 3 (ESD) are supported for address 0 broadcast.

7.5 Data Location Offsets

The locations given in the database are those which should appear in the messages as they are transmitted on the Modbus link. Some host systems offset the addresses so far as the user is concerned. In such cases, the address programmed into the host would be different to those listed. All data locations listed start from 0. Please check the host system documentation carefully to determine if any offsets are required.

Typical Offsets are:

Function Code	Offset to be added to formulae result
01	1
02	10001
03	40001
04	30001
05, 15	1
06, 16	40001

7.6 Data Locations

The data locations in the following tables are all numbered from 0. For a definition of the actuator functions listed refer to section 5. For the DO-1 to DO-4 options, the extra relay output board must be fitted. This can only be fitted in the Centronik actuator.

Note: All data locations listed start from 0; it may be necessary to add an offset to match the number required for the PLC.

7.6.1 Data Accessed with Function Code 01 - Read Coils

Location (Bit)	R/W	Data	Range
0	R/W	Stop command output coil status	0 - 1
1	R/W	Close command output coil status	0 - 1
2	R/W	Open command output coil status	0 - 1
3	R/W	ESD command output coil status	0 - 1
4	R/W	DO-1 output coil status (extra relay S5) ¹	0 - 1
5	R/W	DO-2 output coil status (extra relay S6) ¹	0 - 1
6	R/W	DO-3 output coil status (extra relay S7) ¹	0 - 1
7	R/W	DO-4 output coil status (extra relay S8) ¹	0 - 1
8	R/W	Partial Stroke test	0 - 1
9	R/W	DO-5 output coil status (extra relay S9) ²	0 - 1
10	R/W	DO-6 output coil status (extra relay S10) ²	0 - 1
11	R/W	DO-7 output coil status (extra relay S11) ²	0 - 1
12	R/W	DO-8 output coil status (extra relay S12) ²	0 - 1

Note: Coil 'on' when the state is true, reports as a '1'.

Note ¹: DIO1 or Extra Relay board 1 must be fitted

Note ²: DIO2 or Extra Relay board 2 must be fitted (you can only fit one DIO board at a time).

7.6.2 Data Accessed with Function Code 02 - Read Discrete Inputs

Location (Bit)	R/W	Data	Range				
0	RO	Actuator moving	0 - 1				
1	RO	Closed position limit	0 - 1				
2	RO	Open position limit	0 - 1				
3	RO	Running closed	0 - 1				
4	RO	Running open	0 - 1				
5	RO	Remote selected	0 - 1				
6	RO	Local Stop selected	0 - 1				
7	RO	Local selected	0 - 1				
8	RO	Thermostat tripped ¹	0 - 1				
9	RO	Monitor relay	0 - 1				
10	RO	Reserved	0 - 1				
11	RO	Reserved	0 - 1				
12	RO	Valve moving by hand ²	0 - 1				
13	RO	Moving inhibited by MIT	0 - 1				
14	RO	Position control enabled	0 - 1				
15	RO	EEPROM Checksum failure	0 - 1				
16	RO	Reserved	0 - 1				
17	RO	Open interlock active	0 - 1				
18	RO	Close interlock active	0 - 1				
19	RO	DI-1	0 - 1				
20	RO	DI-2	0 - 1				
21	RO	DI-3	0 - 1				
22	RO	DI-4	0 - 1				
23	RO	Reserved					
24	RO	Reserved					
25	RO	Reserved					
26	RO	Control contention	0 - 1				
27	RO	Partial stroke test in progress	0 - 1				
28	RO	Partial stroke test error	0 - 1				
29	RO	General alarm ³	0 - 1				

Note: When the input is true the status reports as a '1'.

Note ¹: Thermostat tripped alarm shows 1 minute after being triggered by over temperature.

Note ²: Remains on (1) while handwheel is moving.

Note³: General alarm is any of the following: valve alarm, actuator alarm, control alarm or monitor relay. This alarm shows as soon as a Thermostat tripped alarm is triggered.

	ation g/Bit)	R/W	Data	Range		
0	0	RO	Actuator moving	0 - 1		
0	1	RO	Closed position limit	0 - 1		
0	2	RO	Open position limit	0 - 1		
0	3	RO	Running closed	0 - 1		
0	4	RO	Running open	0 - 1		
0	5	RO	Remote selected	0 - 1		
0	6	RO	Local Stop selected (offline)	0 - 1		
0	7	RO	Local selected	0 - 1		
0	8	RO	Thermostat tripped	0 - 1		
0	9	RO	Monitor relay	0 - 1		
0	10	RO	Reserved	0 - 1		
0	11	RO	Reserved	0 - 1		
0	12	RO	Valve moving by hand	0 - 1		
0	13	RO	Moving inhibited by MIT	0 - 1		
0	14	RO	Position control enabled	0 - 1		
0	15	RO	Reserved	0 - 1		
1	0	RO	Reserved	0 - 1		
1	1	RO	Open interlock active	0 - 1		
1	2	RO	Close interlock active	0 - 1		
1	3	RO	DI-1	0 - 1		
1	4	RO	DI-2	0 - 1		
1	5	RO	DI-3	0 - 1		
1	6	RO	DI-4	0 - 1		
1	7	RO	Reserved	0		
1	8	RO	Reserved	0		
1	9	RO	Reserved	0		
1	10	RO	Control contention	0 - 1		
1	11	RO	Partial stroke test in progress	0 - 1		
1	12	RO	Partial stroke test error	0 - 1		
1	13	RO	General alarm*	0 - 1		
1	14	RO	Reserved	0		
1	15	RO	Actuator running under Position Control	0 - 1		
2	_	RO	Actuator Instantaneous Torque	0 - 78 hex (0 - 120%)		
3	-	RO	Valve Position	0 - 3E8 hex (0.0 - 100.0%		
4	-	RO	Analogue Input (Centronik range set by Insight 2 only. Analogue signal type: 5,10, 20 V or mA)	0 - 3E8 hex (0.0 - 100.0%)		
5	-	R/W	Actuator Digital Control	0 = stop 1 = close 2 = open 3 = ESD 4 = partial stroke test		
6	-	R/W	Actuator Position DV (desired value)	0 - 3E8 hex (0.0 - 100.0%		
7-25	-	R/W	Actuator Parameters see Section 8	-		
26-31	-	R/W	Actuator Tag name	12 bytes ASCII character		

7.6.3 Data Accessed with Function Code 03 - Read Holding Registers

(* General alarm is any of the following: valve alarm, actuator alarm, control alarm or monitor relay).

The Actuator Cyclic Data Signals

7.6.4 Data Accessed with Function Code 04 - Read Input Registers

	ation g/Bit)	R/W	Data	Range
0	0	RO	Actuator moving	0-1
0	1	RO	Closed limit	0-1
0	2	RO	Open limit	0-1
0	3	RO	Running closed	0-1
0	4	RO	Running open	0-1
0	5	RO	Remote selected	0-1
0	6	RO	Local Stop selected	0-1
0	7	RO	Local selected	0-1
0	8	RO	Thermostat tripped	0-1
0	9	RO	Monitor relay	0-1
0	10	RO	Valve Obstructed	0-1
0	11	RO	Valve Jammed	0-1
0	12	RO	Valve moving by hand	0-1
0	13	RO	Moving inhibited	0-1
0	14	RO	Position control enabled	0-1
0	15	RO	Watchdog recovery	0-1
1	0	RO	Reserved	0-1
1	1	RO	Reserved	0-1
1	2	RO	Reserved	0-1
1	3	RO	DI-1	0-1
1	4	RO	DI-2	0-1
1	5	RO	DI-3	0-1
1	6	RO	DI-4	0-1
1	7	RO	Reserved	0-1
1	8	RO	Reserved	0
1	9	RO	Reserved	0
1	10	RO	Control contention	0-1
1	11	RO	Partial stroke test in progress	0-1
1	12	RO	Partial stroke test failed	0-1
1	13	RO	General alarm	0-1
1	14	RO	Reserved	0
1	15	RO	Reserved	0
2	-	RO	Actuator Instantaneous Torque	0 - 78 hex (0 - 120%)
3	-	RO	Valve Position	
4	-	RO	Analogue Input (Centronik range set by Accent only. Analogue signal type: 5,10, 20 V or mA)	0 - 3E8 hex

C 30

7.6.5 Data Accessed with Function Code 05 and Code 15 - Force Single and Multiple Coils

Location (Reg/Bit)	R/W	Data	Range
0	R/W	Stop command output coil status	0-FF00 hex
1	R/W	Close command output coil status	0-FF00 hex
2	R/W	Open command output coil status	0-FF00 hex
3	R/W	ESD command output coil status	0-FF00 hex
4	R/W	DO-1 output coil status (extra relay S5)	0-FF00 hex
5	R/W	DO-2 output coil status (extra relay S6)	0-FF00 hex
6	R/W	DO-3 output coil status (extra relay S7)	0-FF00 hex
7	R/W	DO-4 output coil status (extra relay S8)	0-FF00 hex
8	R/W	Partial stroke test	0-FF00 hex

Using code 05 write FF00 (hex) to turn on the command, DO-1 to DO-4 are turned off by writing '0'. The other coil commands are cleared by various means as explained in section 5.1.2.

Using code 15 write 1 to turn on the command and 0 to turn off the command.

The commands to open, close, stop, ESD or partial stroke test the actuator are not cancelled by writing a '0', but this will de-energise the coils. The actuator latches the instruction and will complete the action unless a subsequent counter command is received before the action is completed.

7.6.6 Data Accessed with Function Code 06 and 16 – Preset Single and Multiple Registers

Locatio	on (Bit)	Range		
5	-	R/W	Actuator Digital Control	0-4 0 = stop 1 = close 2 = open 3 = ESD 4 = partial stroke test ¹
6	_	R/W Actuator Position DV (desired value)		0-3E8 hex (0.0 – 100.0%)

Note ¹: Integer valve, not bit location.

The Actuator Digital Control register allows one of the five commands to be selected by writing the appropriate value.

Provided limited range positioning is not invoked, the Actuator Position DV register assigns a special importance to the values 0% and 100% written to this register. The command is revised so as to fully close the value to its tight shut off position (0%) and to fully open the value (100%).

7.6.7 Data Accessed with Function Code 07 – Read Exception Status

Code 07 reads a predefined data set with minimal overheads and is used for fast data transfer. A single byte is returned.

Location (Bit)	R/W	Data	Range
0	RO	ESD coil status	0-1
1	RO	Open coil status	0-1
2	RO	Close coil status	0-1
3	RO	Stop coil status	0-1
4	RO	Closed position limit	0-1
5	RO	Open position limit	0-1
6	RO	Monitor relay	0-1
7	RO	Reserved	0-1

7.6.8 Data Accessed with Function Code 08 – Loopback Diagnostic Test

The Loopback Test is used to test communications only. In a correctly working unit the return message is the same as the query sent. Two codes are supported.

Code	Data
00	Return query data
02	Return diagnostic register

The Diagnostic Register contains the following data.

32

Locatio	on (Bit)	R/W	Data	Range
-	0	RO	Memory Status Fault	0-1
-	1	RO	Auxiliary control input active	0-1
-	2	RO	Position controller enabled	0-1
-	3	RO	Highway ESD active	0-1

7.6.9 Data Accessed with Function Code 17 – Report Slave ID

The Slave ID data response includes 30 registers, (60 bytes) of ASCII data to give the device name, software version and service tag number.

Byte	Data
1 - 23	'Null Centork MODBUS MODULE.'
24 - 28	Software version: 'xxx' (where xxx is the revision number)
29 - 60	Tag Name 12 bytes, plus 20 spaces (for Centork)

7.6.10 Database Summary:

			Location			Accessed by MODBUS function code								
Data	CKc	CKrc	(Register / Bit)	Function	01	02	03	04	05	06	15	16	Other	
Stop	~	~	Coil 0	Digital Output	01				05		15		07	
Close	~	~	Coil 1	Digital Output	01				05		15		07	
Open	~	~	Coil 2	Digital Output	01				05		15		07	
ESD	~	~	Coil 3	Digital Output	01				05		15		07	
Output DO-1 (extra relay S5) ¹	~	~	Coil 4	Digital Output	01				05		15			
Output DO-2 (extra relay S6) ¹	~	~	Coil 5	Digital Output	01				05		15			
Output DO-3 (extra relay S7) ¹	~	~	Coil 6	Digital Output	01				05		15			
Output DO-4 (extra relay S8) ¹	~	~	Coil 7	Digital Output	01				05		15			
Partial Stroke	~	~	Coil 8	Digital Output	01				05		15			
Output DO-5 (extra relay S9) ²	~	~	Coil 9	Digital Output	01		İ.		05		15			
Output DO-6 (extra relay S10) ²	~	~	Coil 10	Digital Output	01	1			05		15			
Output DO-7 (extra relay S11) ²	~	~	Coil 11	Digital Output	01				05		15			
Output DO-8 (extra relay S12) ²	~	~	Coil 12	Digital Output	01				05		15			
Actuator moving	V	~	0/0	Digital Input		02	03	04						
Closed position limit	· ·	~	0/1	Digital Input		02	03	04	1				07	
Open position limit	~	~	0/2	Digital Input		02	03	04					07	
Valve running close	~	~	0/3	Digital Input		02	03	04						
Valve running open	~	~	0/4	Digital Input		02	03	04						
Selector in remote	~	~	0/5	Digital Input		02	03	04						
Selector in local stop	~	~	0/6	Digital Input		02	03	04						
Selector in local	~	~	0/7	Digital Input		02	03	04						
Thermostat tripped	~	~	0/8	Digital Input		02	03	04						
Monitor relay	~	~	0/9	Digital Input		02	03	04					07	
Valve obstructed	· ·	~	0/9			02	03	04					07	
	-	~		Digital Input		02	03	04						
Valve jammed	<i>v</i>	V V	0/11	Digital Input	_		03	04						
Manual movement	~	-	0 / 12	Digital Input		02		-						
MIT/Interrupter timer	~		0 / 13	Digital Input		02	03	04						
Position control enabled	· ·	<i>v</i>	0 / 14	Digital Input	_	02	03	04						
Watchdog Recovery	<i>v</i>	v	0 / 15	Digital Input	_	02	03	04						
Reserved	×	×	1/0	Digital Input	_									
Open Interlock input active	~	~	1/1	Digital Input	_	02	03	04						
Close Interlock input active	~	~	1/2	Digital Input	_	02	03	04						
Hard wired input DI-1 (open)	~	~	1/3	Digital Input	_	02	03	04						
Hard wired input DI-2 (close)	~	~	1/4	Digital Input	_	02	03	04						
Hard wired input DI-3 (stop)	~	~	1/5	Digital Input	_	02	03	04						
Hard wired input DI-4 (ESD)	~	~	1/6	Digital Input	_	02	03	04						
Reserved	×	×	1/7	Digital input										
Reserved	×	×	1/8	Digital input										
Reserved	×	×	1/9	Digital input										
Control contention	~	~	1 / 10	Digital input		02	03	04						
Partial stroke test in progress	~	~	1 / 11	Digital input		02	03	04						
Partial stroke test error	~	~	1 / 12	Digital input		02	03	04						
General alarm	~	~	1 / 13	Digital input		02	03	04						
Reserved	×	×	1 / 14	Digital input										
Reserved	×	×	1 / 15	Digital input										
Instantaneous torque	~	~	2/-	Input register			03	04						
Valve position	~	~	3/-	Input register			03	04						
Analogue Input	~	~	4 / -	Input register			03	04						
Actuator digital control	~	~	5/-	Output register			03	1		06		16		
Position demand output	~	~	6/-	Output register			03			06		16		
Action on loss of signal	~	~	7/-	Parameter register		1	03			06		16		
Min position	~	~	8/-	Parameter register			03			06		16	L	
Max position	V	~	9/-	Parameter register			03			06		16		

		Location				Accessed by MODBUS function code									
Data	CKc	CKrc	(Register / Bit)	Function	01	02	03	04	05	06	15	16	Other		
Deadband	~	~	10/-	Parameter register			03			06		16			
Motion Inhibit Timer MIT	~	~	11 / -	Parameter register			03			06		16			
Aux mask	~	~	12 / -	Parameter register			03			06		16			
Comms lost position	~	~	13 / -	Parameter register			03			06		16			
Hysteresis	~	~	14 / -	Parameter register			03			06		16			
Slow Mode Range	×	×	15 / -	Parameter register											
Valve Jammed Time	×	~	16/-	Parameter register			03			06		16			
Manual Movement Travel	×	~	17 / -	Parameter register			03			06		16			
Reserved	×	×	18/-	Parameter register											
ESD DI-4/Net disable	~	~	19/-	Parameter register			03			06		16			
Analogue input max	~	~	20/-	Parameter register			03			06		16			
Comms fault timer	~	~	21 / -	Parameter register			03			06		16			
Address	~	~	22 / -	Parameter register			03			06		16			
Baud rate	~	~	23 / -	Parameter register			03			06		16			
Parity, Stop bits	~	~	24 / -	Parameter register			03			06		16			
Termination on = 1, off = 0	~	~	25 / -	Parameter register			03			06		16			
Actuator Tag number	~	~	26-31 / -	Parameter register			03			06		16			
Reserved	~	~	32-59/-	Input register			03								

Note ¹: DIO1 or Extra Relay board 1 must be fitted.

C 34

Note²: DIO2 or Extra Relay board 2 must be fitted. (You can only fit one DIO or Extra Relay board at a time).

Configuration Registers

8 CONFIGURATION REGISTERS

In order to make the best use of the MFU, the module has a number of configurable parameter registers that may be adjusted to optimise the performance of the actuator. All the parameter registers have factory default settings designed to meet the most common requirements for the actuator. If these are not suitable for a particular application, then the values can be changed by using a Modbus communication tool.

The Modbus Module contains 20 configurable parameter registers and some can be altered by using the infra-red or Bluetooth communications link and the setting tool. By using a Modbus communication tool connected to the RS-485 highway all the registers may be reviewed and altered to suit the particular application for the actuator.

Care must be exercised with access to these parameter registers as they can alter the complete performance of the actuator.

This section of the manual describes each variable parameter register and should be used for reference when using the configuration tools. All the registers can be read using function code 03 (Read Holding Registers). The contained values may be altered using function code 06 (Preset Single Register) or function code 16 (Preset Multiple Registers).

Description	Value/Range	Default Value	Location (Register)	R/W Access		
Action on Loss of Comms	0 = Nothing (No Action) 1 = Open 3 = Close 5 = Stop 7 = Position	0 = Nothing 0000 hex	7	03	06	16
Limited Range Position Minimum	0 – 100% 0000 – 0064 hex	0% 0000	8	03	06	16
Limited Range Position Maximum	0 – 100% 0000 – 0064 hex	100% 0064 hex	9	03	06	16
Deadband ¹	0.0– 25.5% ² 0000 – 00FF hex	5.0% 0032 hex	10	03	06	16
Motion Inhibit Time	0 – 255 sec 0000 –00FF hex	5 sec 0005 hex	11	03	06	16
Aux Input Mask	0 – 255 0000 – 00FF hex	15 000F hex	12	03	06	16
Comms Lost Position	0 – 100% 0000 – 0064 hex	0% 0000 hex	13	03	06	16
Hysteresis ¹	0.0 – 25.5% 0000 – 00FF hex	2.0% 0014 hex	14	03	06	16
Reserved			15			
Valve Jammed Time	0 – 255 sec 0000 – 00FF hex	5 sec 0005 hex	16	03	06	16
Manual Movement Travel	0 – 100% 0000 – 0064 hex	10% 000A hex	17	03	06	16
Watchdog Timeout	0 – 255 sec 0000 – 00FF hex	10 sec 000A hex	18	03	06	16
ESD DI-4/Net Disable	DI-4 is ESD = 0 DI-4 is Net Disable = 1	ESD 0000 hex	19	03	06	16
Reserved			20			
Comms Fault Timer	0 – 255 sec 0000 – 00FF hex	10 sec 000A hex	21	03	06	16

Actuator Related Network Configurable Parameter Registers

Note 1: Setting the deadband lower than the hysteresis or the hysteresis greater than the deadband causes the hysteresis to be set to 0.1%

.

Description	Value/Range	Default Value	Location (Register)	R/W Access		
Modbus Address	1 – 247 0001 – 00F7 hex	247 00F7 hex	22	03	06	16
Baud Rate (baud)	$0 = not used$ $1 = 300 \ 6 = 9k6$ $2 = 600 \ 7 = 19k2$ $3 = 1k2 \ 8 = 38k4$ $4 = 2k4 \ 9 = 57k6$ $5 = 4k8 \ 10 = 115k2$ $0001 - 000A \ hex$	9k6 0006 hex	23	03	06	16
Parity/Stop bits	0 = No parity, 1 stop bit 1 = No parity, 2 stop bits 2 = Even, 1 stop bit 3 = Even, 2 stop bits 4 = Odd, 1 stop bit 5 = Odd, 2 stop bits	None/1 stop 0000 hex	24	03	06	16
Network Termination	0 = off, 1 = On	0 0000 hex	25	03	06	16
Actuator Tag Name	Any ASCII character (12 characters max)	blank all = 0000	26 to 31	03	06	16

Modbus Network Related Network Configurable Parameter Registers

8.1 Actuator Related Configurable Parameter Registers

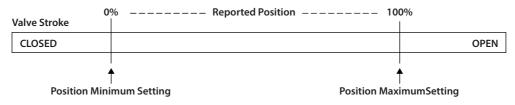
These parameter registers set-up the response the actuator will make to various control and network actions.

8.1.1 Action on Loss of Comms (Register 7)

This register is used with register 13 (Comms Lost Position) and 21 (Comms Fault Timer).

The Action on Loss of Comms register defines the actuator action that will result after the time set for the Comms Fault Timer (register 21) if there is no network communication activity detected by the MFU.

The action may be:


- Nothing (0) No action; the actuator will complete any command in process (default setting)
- **Open** (1) The actuator will open the valve
- **Close** (3) The actuator will close the valve
- **Stop** (5) The actuator stops
- **Position** (7) The actuator will move the valve to the position set in the Comms Lost Position (register 13).

Modbus Communication

8.1.2 Limited Range Position Minimum and Maximum (Registers 8 and 9)

These parameter registers are used to define the positions in the range of valve travel that will be reported as 0 to 100% if the whole travel from the closed position to the open position is not used. In addition, the position demand setpoint output value will also be modified to follow this limited range.

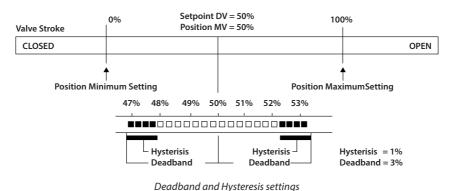
It is possible to make the position data reported and the position controller relate to a reduced span of actual valve travel. In this mode the position data relates to the reduced portion of the valve stroke. This is sometimes used where the valve is required to have a 0% position (or 100% position) that is not the same as the fully closed position (or fully open position). These parameters define the actual limited range of valve travel that will be used for the position reporting and control by the positioner.

Limited Range Position Control and Reporting

Note that the digital open and close commands will still make the valve travel over its full stroke. The special case analogue commands of 0% and 100% that would otherwise cause the actuator to travel to the limit switch or torque off positions are inhibited if values other than 0 and 100 are set in these parameters.

The values inserted relate to the maximum total valve travel between closed and open and represent the point in the full stroke which will now be used for the limited stroke 0 and 100 values.

8.1.3 Deadband and Hysteresis (Registers 10 and 14)


When using position control by sending a value to the Actuator Position DV set point there are a number of parameter registers used to tune the position controller and reduce the possibility of damage to the actuator. These two registers are set to prevent hunting around the set point due to high inertia of the valve. They will require adjustment for each specific application. In addition, the Motion Inhibit Timer is used to ensure the actuator does not carry out an excessive number of starts in a given period.

Deadband The control used for the positioner is proportional only. The MFU will run the actuator to the desired position and then it stops. As the actuator and valve combination have some inertia there is a possibility that the desired position may be overrun and the positioner will then reverse the direction of travel to make the valve adopt the desired position. This overshoot and return may continue for a number of cycles and is known as hunting; the valve and actuator combination will hunt around the set point if the inertia is high and the deadband is set too low. To prevent this from happening there is a Deadband setting whereby once the actuator enters the deadband the motor will be stopped. For example, a 5% deadband will cause the motor to be stopped once the actual position is within 5% of the desired position. The inertia will then bring the actual position nearer the desired position.

The deadband is the allowable error around the set point. This determines the minimum step change response of the actuator.

Hysteresis The Hysteresis is the amount of movement inside the deadband permitted before the motor stops.

In addition to the deadband a second setting, hysteresis, further refines the performance of the position controller. The positioner will run the actuator towards the set point DV until the actual position is within the deadband minus the hysteresis setting. This has the effect of instructing the actuator to stop when it is nearer the DV. The actuator will not restart unless it overshoots and runs outside the deadband or a new command places the new desired position outside the deadband.

Modbus Communication

8.1.4 Motion Inhibit Timer (MIT) (Register 11)

The MIT setting is the period that must elapse between consecutive starts of the actuator motor when in positioning mode. The time runs from when the motor stops until the next time it starts

The idle period will prevent the actuator motor from exceeding its rated number of starts per hour.

In addition, when tuning the valve positioner, the setting can be used to allow the plant dynamics to stabilise between valve movements.

8.1.5 Auxiliary Input Mask (Register 12)

This parameter register allows the auxiliary inputs (open, stop, close, ESD) to be set to control the actuator or simply to report their status. In addition, it allows the sense of the input (open or closed contact) that is reported as true (1) to be set. Actuator control always requires a true (1) input signal. The status of the inputs is always reported over the network and they can be used to report associated plant inputs instead of controlling the actuator.

The register should be considered in its binary format using the low order byte. The number has the binary form $X^7 X^6 X^5 X^4$, $Y^3 Y^2 Y^1 Y^0$, requiring 8 bits. Each bit in the high order nibble, $X^7 X^6 X^5 X^4$, either enables or disables the associated input for control of the actuator. The bits in the low order nibble, $Y^3 Y^2 Y^1 Y^0$, determine if the input reports a closed contact as a '1' or an open contact as a '1'. Only when the input is a '1', as set by the mask, and the contact state is normally open will the actuator respond to the input if it is also set to control the actuator.

To allow an input to act as a control signal, its associated bit in the high order nibble must be set to a '1' in the mask. To allow a closed contact to be reported as a '1' then its associated bit in the low order nibble must be set to '1' in the mask.

Bit	Position	Value	Function
7	χ7	0	Disable ESD input as command
	~	1	Enable ESD input as command
6	χ6	0	Disable Stop/Maintain input as command
0	~	1	Enable Stop/Maintain input as command
5	χ5	0	Disable Close input as command
		1	Enable Close input as command
4	χ4	0	Disable Open input as command
		1	Enable Open input as command
3	Y3	0	Report closed contact on ESD input as '0'
5		1	Report closed contact on ESD input as '1'
2	Y2	0	Report closed contact on Stop/Maintain input as '0'
		1	Report closed contact on Stop/Maintain input as '1'
1	Y1	0	Report closed contact on Close input as'0'
		1	Report closed contact on Close input as '1'
0	Yo	0	Report closed contact on Open input as '0'
		1	Report closed contact on Open input as '1'

Modbus Communication

	Most Signi	Least Significant Bit						
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Х7	Х6	X5	X4	Y3	Y2	Y1	Yo
	Enable DI-4 ESD	Enable DI-3 Stop	Enable DI-2 Close	Enable DI-1 Open	Invert DI-4	Invert DI-3	Invert DI-2	Invert DI-1
Example 1	0	0	0	0	1	1	1	1
Example 2	1	1	1	1	1	1	1	1
Example 3	0	0	0	0	0	0	0	0

The following examples show how the Auxiliary Input Mask settings can be applied.

- Example 1 The default value of '15' (0000,1111 binary or 0F hex) makes all 4 inputs report closed contacts as true (1) and none of the inputs will operate the actuator.
- Example 2 The value 255 (1111,1111 binary or FF hex) makes all 4 inputs report closed contacts as true (1) and all the inputs control the actuator in their predefined way.
- Example 3 The value 0 (0000,0000 binary or 00 hex) makes all 4 inputs report open contacts as true (1) and none of the inputs will operate the actuator.

8.1.6 Comms Lost Position (Register 13)

The setting in this parameter register determines the position in the range 0 to 100% that the actuator will move to if the Modbus network communications stops being received, provided the Fault Mode (Register 1) is set to 'Position'. No action will be taken unless the communications stops for a period equal to or greater than the setting in the Comms Fault Timer (Register 21).

8.1.7 ESD DI-4/Net Disable (Register 19)

In the Centronik actuator this input determines the mode of operation for the ESD/DI-4 remote input. The input can be used either to disable control of the actuator from the network, or to act as an ESD/digital input. When this setting is made 'Active' the input will disable network control of the actuator when the contact input is closed, irrespective of the Aux Mask setting.

8.1.8 Analogue Input Max (Register 20)

This parameter register is not used in the Centronik.

8.1.9 Comms Fault Timer (Register 21)

Parameter register 21, the Comms Fault Timer setting, determines the number of seconds that network communication must be absent before the setting for the Fault Mode will be carried out. The values range from 0 to 65 seconds.

8.2 Modbus Network Related Configurable Parameter Registers

These parameter registers set-up the MFU for network communications.

8.2.1 Modbus Address (Register 22)

The Modbus Address is the address on the network that the Modbus Module will respond to. The address can be in the range 1 to 247, though 247 is generally not used as this is the default address and may be used by any newly introduced device on the network.

With a dual channel unit both channels can use the same address or different addresses.

8.2.2 Baud Rate (Register 23)

Register 23 sets the communication baud rate. On a dual channel unit both channels operate at the same baud rate.

8.2.3 Parity and Stop Bits (Register 24)

The parity and number of stop bits used in the communications is selected by altering the content of this register. On a dual channel unit both channels operate using the same parity and stop bit setting.

8.2.4 Termination (Register 25)

This parameter register is used to switch the network termination on within the MFU. This should only be done where the actuator is the last device on a network segment. See Section 4.4.

8.2.5 Actuator Tag Name (Register 26 to 31)

The MFU may be programmed to contain a 12 character tag name string in these registers. Each byte contains one character.

9 SETTING UP AND MAINTAINING THE MFU

In most applications the majority of the default settings in the Modbus Module will be suitable for the operation of the valve and need not be altered. However, in every case it will be necessary to alter the address since the default should never be used within a live system (the default value is 247).

9.1 Using a Network Configuration Tool

Any device capable of writing register values can be used to configure the Modbus Module. Changes to the actuator related parameter registers and network related parameter registers become active immediately they are altered.

The individual register values required may be different for each actuator and will depend on the application and process being controlled as well as the actuator size, speed and other design features.

9.1.1 Accent

This software can be used to configure and view the settings and configuration of the Centronik. It can be freely downloaded from the Centork website. It is designed to be run from a Windows computer and connects to the actuator using Bluetooth. Please see the Centronik technical manual for more details.

Accent File Connection Security Tools Help			
◎風Ш⊕⇒◆◆×			
Mode OFFLINE BLUETOOTH ⊖ - Actuators ⊖ - CK2 ⊖ - 20000000 AC-LAB → Accent ADF Information V100	Type: Series Cartonic Valve Tag: Centronic		centor
- Actuator Information - Actuator Name Plate		Actuator Settings	
Actuator Name Plate Actuator Settings	Basic Settings	-	^
 Torgue Settings 	Close Action	Position	() Torque
- Power Settings	Open Action	Position	O Torque
 Digital Input Settings 	Direction to Close	Godwise	O Anti-Clockwise
-Partial Stroke Settings	ESD Configuration	0.000	
- Relay Settings - Option Control	ESD Action	ESD Close	•
- Control Settings	ESD Contact Type	O Normally Closed	Normally Open
-Ul Settings	ESD Override Interlock	(i) No	O Yes
- DSM Encoder	ESD Override Local Stop	(i) No	O Yes
Network Option Cards Fitted	ESD Override Thermostat	No	() Yes
- CK2 Status	ESD Override Interrupter Timer	No	() Yes
Bluetooth Setting Tool	ESD Input Function	@ ESD	Network Control Disable
	Remote Configuration		*
	Two Wire Priority	Close Priority	•
	Interlock Mode	Disabled	•
	Motor Enable On Maintain	Disabled	•
	Fast Remotes (DC Only)	Oisabled	C Enabled
	Push to Run Past Limit	Disabled	 Enabled
	Conditional Control Error Indication Time (sec)	00	① 0.2
	Remote Qualification Time (sec)	00	① 0.1
	Remote AC Reject Level		
	Qualification Time Of DC Signal in AC Mode (sec)	0	① 0.05
	Local Configuration		^
	Local Push to Run	Disabled	C Enabled
	Local Close Dominant Mode	Disabled	C Enabled
	Setting Tool Local Control	@ Disabled	C Enabled

Accent Actuator Settings Page

If Accent won't connect to your actuator, check the actuator security settings using the setting tool.

9.2 Setting up the network address in the MFU

The actuator includes an infra-red (and optional Bluetooth) communication port for setting the network address for the actuator using the Centork supplied setting tool. The software, Accent, can be used if Bluetooth is fitted. The address can also be set-up up over the Modbus network using a Class 2 master.

9.3 Setting up a Centronik with the Setting Tool

The actuator includes an infra-red (and optional Bluetooth) communication port for setting the actuator performance, limit switches and so on. This communication link can be used to set some, but not all, of the MFU parameters. The parameters that may be set by using the Setting Tool and the infra-red link are listed below. The available range for the deadband setting when using the setting tool is less than the range found using the other configuration tools.

Register Number.	Description	Range	Default Value
7	Action on Loss of Comms	Nothing (No Action), Stop, Close, Open, Position	Nothing
8	Limited Range Position Minimum	0 - 100%	0%
9	Limited Range Position Maximum	0 - 100%	100%
10	Deadband	0.0 - 25.5%	5.0%
11	Motion Inhibit Time	0 - 255 sec	3 sec
12	Aux Input Mask	0 - 255 (00 – FF hex)	15 (0F hex)
13	Comms Lost Position	0.0 - 100.0%	0.0%
14	Hysteresis	0.0 - 25.5%	2.0%
22	Address	0 - 247	247
23	Baud Rate (baud)	300, 600, 1k2, 2k4, 4k8, 9k6, 19k2, 38k4 57k6 and 115k2	9k6
24	Parity (1 stop bit)	Odd, Even, None	None
25	Termination	0 = Off - 1 = On	Off

Parameters may only be altered if the actuator control knob is set to the Local or Local Stop position.

The next diagram illustrates the access route through the actuator menu screens to reach the settings that affect the MFU for the Centronik unit.

Setting up and maintaining the MFU

YES							<u>OPEN</u>																												
ENABLE NO							STOP	TWO-WIRE	<u>HARDWIRE.</u>																										
OPEN							CLOSE																												
ERM.LIMIT CLOSE							DISABLED																												
<u>0%</u>							ENABLED																												
TO.POSITI.	PART.STRK.						CONDITIO.	INTERLOC.																											
<u>0</u>	<u></u>						PART.STRK.																												
OUT-TIME 32676						DISABLED																													
<u>0</u>						OPTION1	CTRL.SRC.1																												
RET- TIME 32676						OPTION2																													
TEST SURE?						DISABLED																													
DEADBAND						OPTION1	CTRL.SRC.2																												
25.50%						OPTION2		OPTN.CTRL.																											
<u>0%</u> HYSTERES						DISABLED																													
25.50%						HARDWIRE.	6770L 671																												
<u>INHIB.TIM.</u>	POSITING.					<u>SRC- 1</u>	CTRL.SEL.																												
255						HRD&SRC.1																													
LO.SIG.POS						<u>SRC-1&2</u>																													
100%						DISABLED																													
HI.SIG.POS						FITTED OPTION	OPTION-1																												
100%						FITTED OPTION		OPTN.FITD.																											
AUXILRY.1						DISABLED		<u>or m.mb.</u>																											
OPEN						FITTED OPTION	OPTION-2																												
CONTACT.1						FITTED OPTION																													
NORM.CL						FITTED OPTION	OPTION-1																												
DIGII						<u>0</u>	LOCT C TIM																												
AUXILRY.2 OPEN						<u>65</u>	LOST.S.TIM.																												
NORM.OF						OFF	OPTION-1 LOST.S.ACT.						⊇İ																						
CONTACT.2 NORM.CL				10	Ľ.	OPEN				REMOTE	CONTROL.	SETTING	MEN																						
DIGII	AUX.MASK	DTE	ß	U U	AEN	CLOSE		<u>N-1</u> LOST.S.ACT.	OPTION-1 LOST.S.ACT.	<u>TION-1</u> LOST.S.ACT.	LOST.S.ACT.	LOST.S.ACT.	LOST.S.ACT.	<u>ON-1</u> LOST.S.ACT.	<u>LOST.S.ACT.</u>	<u>LOST.S.ACT.</u>	LOST.S.ACT.	LOST.S.ACT.	LOST.S.ACT.	LOST.S.ACT.	LOST.S.ACT.	LOST.S.ACT.	LOST.S.ACT.	LOST.S.ACT.	<u>LOST.S.ACT.</u>	LOST.S.ACT.	LOST.S.ACT.	LOST.S.ACT.	LOST.S.ACT.	OPTION-1		EM	INC	E	MAIN.MENU.
AUXILRY.3 OPEN		REMOTE	CONTROL	SETTINGS	MAIN.MENU.	STOP																												S S E	
NORM.OF		~	Ö	S	MA	POSITION																													
CONTACT.3			RL.SRC S.LOSS.POS.			c		CTRL.SRC																											
DIGII						100%	<u>S.LOSS.POS.</u>																												
AUXILRY.4 OPEN						FITTED OPTION	OPTION-2																												
NORM.OF						<u>0</u>	011101112																												
CONTACT.4 NORM.CL							LOST.S.TIM.																												
						OFF																													
ADDRESS 1 247					OPEN																														
<u>OFF</u>						CLOSE																													
TERMINAT.						STOP																													
<u>ON</u>						<u>310P</u>																													
300								LOST.S.ACT.	LOST.S.ACT.		LOST.S.A																								
<u>600</u>								<u>OPTION-2</u>																											
1200																																			
2400																																			
4800 BAUDRATE																																			
<u>9600</u>						POSITION																													
<u>19200</u>						<u>0%</u>																													
<u>38400</u>	Modbus																																		
57600																																			
<u>115.2</u>																																			
NONE.1.5							S.LOSS.POS.	S.LOSS.POS.																											
NONE.2.																																			
EV.1 STO																																			
EV.2 STOP																																			
ODD.1.51																																			
ODD.2.51																																			
1 <u>1</u>						<u>100%</u>																													
SECND.ADD 247																																			
CONTROL C.1.CT.C2																																			

Setting tool menu structure and MFU settable parameters

FITTED OPTION: Please select Modbus in the above menu and set appropriate Modbus parameter values in the menu on the right.

Refer to the Centork installation manual for more details.

9.4 Setting up the remote source in a Centronik with the Setting Tool

The actuator requires the remote source to be set-up into the correct state otherwise the network will be unable to control the actuator:

Refer to the installation manual of the actuator for more details.

9.5 Maintenance and Repair

There is no periodic service requirement for the MFU.

Repairs should not be attempted on the module. Replacing the MFU with a new replacement device should rectify any failure. Static-sensitive devices are used in the MFU. It is therefore mandatory to observe anti-static precautions when handling or working on the unit.

9.6 Records

In order that a replacement can be easily introduced in the event of a device failure it is very important to record and keep safe all the settings made for the variable registers. The table lists all the registers that must be checked and set-up for each Modbus Module on a network. The data should be recorded for each module.

Note: Make a note of all changes to register settings to ensure that, in the case of a failure, the replacement device can be swiftly set to the correct values.

• Actuator Configurable Registers

Parameter No.	Description	Setting	Notes
7	Action on Loss of Comms		
8	Limited Range Position Minimum		
9	Limited Range Position Maximum		
10	Deadband		
11	Motion Inhibit Time		
12	Aux Input Mask		
13	Comms Lost Position		
14	Hysteresis		
19	ESD DI-4/Net Disable		
21	Comms Fault Timer		

• Network Configurable Registers

Parameter No.	Description	Setting	Notes
22	Address		
23	Baud Rate (baud)		
24	Parity and Stop bits		
25	Termination on or off		
26-31	Actuator Tag Name		

Troubleshooting

9.7 Troubleshooting

In general, most of the problems that are seen with actuators fitted to a Modbus network are due to wiring errors and are simple to test and fix.

Often, the problem is that the network is connected to the wrong actuator terminals. The correct terminal numbers are given in the wiring diagram that comes with each new actuator. If this diagram has been lost, then a new one can be found on the Centork web site. The wiring diagram number is usually given on the actuator name plate.

The terminal connections can be confirmed with a multimeter. With the actuator powered-down, a resistance of approximately 74,000 ohms should be measured across the correct terminals. This will also confirm that the actuator internal loom is correctly connected to a working MFU.

If the reading is open circuit, then there may be a loom problem (only to be seen in a retrofitted actuator – all actuators are factory tested before shipping), there may not be an MFU fitted, or the MFU may be damaged.

If the network is attached to the correct terminals and there are no communications, then perhaps the A and B connections are reversed. These could be swapped, again with the actuator powered down, and communications checked again with the actuator powered up.

If there are still issues with communications, then please confirm that the correct address, baud rate and parity have been set in the actuator and that they correspond with the settings in the known working DCS.

If there are still issues with communications, please contact Centork Technical Support at the telephone numbers given on the back page of this manual.

The following information helps with the investigation:

- 1. Actuator Serial number from the actuator name plate.
- 2. Wiring Diagram number from the actuator name plate.
- 3. Software version. The software versions of the fitted PCBs may be obtained by following the instructions in the actuator manual. If there is no software version given for the MFU, then it may not be fitted. To find your actuator details access the Actuator Option Build menu as follows:

This **Actuator Option Build [ACT.OPT.BD.]** menu allows the user to view the build details for any options fitted to the actuator. Up to two options can be fitted to the CK Centronik control module. All information shown is read only and configured at the factory.

To scroll through this information use 🕜 and 📿

Option 1 [OPTION 1]:

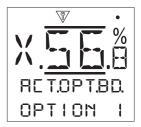
The following attributes pertain to the board fitted as option 1.

Type [TYPE]: - Displays the type of option fitted.

Serial No [SERIAL.NO.]: - Displays the serial number of the option board fitted within the Centronik control module.

Software Version [SW.VERSIO.]: - Displays the software version of the option fitted. Centork technical support may ask for confirmation of this during the support process.

Option 2 [OPTION 2]:


The following attributes pertain to the board fitted as option 2.

Type [TYPE]: - Displays the type of option fitted.

Serial No [SERIAL.NO.]: - Displays the serial number of the option board fitted within the Centronik control module.

Software Version [SW.VERSIO.]: - Displays the software version of the option fitted. Centork technical support may ask for confirmation of this during the support process.

- 4. Type of actuator.
- 5. Feedback from DCS.

Spain fax

tel +34 943 316137 +34 943 223657 email Sales@centork.com

Geman Office tel +49 210395876 USA Office tel +1 585 233 3353

www.centork.com

As part of a process of on-going product development, Centork reserves the right to amend and change specifications without prior notice. Published data may be subject to change. For the very latest version release, visit our website at www.centork.com The name Centork is a registered trademark. Centork recognises all registered trademarks. The *Bluetooth®* word mark and logos are registered trademarks owned by *Bluetooth* SIG, Inc. and any use of such marks by Centork is under license. Published and produced in the UK by Centork. POWJB1015